Dual regulation of fragile X mental retardation protein by group I metabotropic glutamate receptors controls translation-dependent epileptogenesis in the hippocampus.
نویسندگان
چکیده
Group I metabotropic glutamate receptors (mGluRs) stimulation activates translation-dependent epileptogenesis in the hippocampus. This translation is regulated by repressors, including BC1 RNA and fragile X mental retardation protein (FMRP). Recent data indicate that group I mGluR stimulation exerts bidirectional control over FMRP level by activating translation and ubiquitin-proteasome system (UPS)-dependent proteolysis for the up- and downregulation of the protein, respectively. At present, the temporal relationship of translation and proteolysis on FMRP and their interplay for group I mGluR-mediated translation and epileptogenesis are unknown. We addressed these issues by using mouse hippocampal slices. Agonist [(S)-3,5-dihydroxyphenylglycine (DHPG)] stimulation of group I mGluRs caused a biphasic change in FMRP level. An initial decrease (within 10 min) was followed by an increase at 30 min. When slices were pretreated with translation inhibitor (anisomycin or cycloheximide), group I mGluRs elicited a sustained decrease in FMRP. This decrease was prevented by a proteasome inhibitor [Z-Leu-Leu-Leu-CHO (MG-132)]. When slices were pretreated with MG-132 alone, DHPG no longer elicited any change in FMRP. MG-132 also suppressed increase in other proteins, including postsynaptic density-95 and α-calcium/calmodulin-dependent protein kinase II, normally elicited by group I mGluR stimulation. Physiological experiments showed that proteasome inhibitor suppressed group I mGluR-induced prolonged synchronized discharges. However, proteasome inhibitor did not affect group I mGluR-induced prolonged synchronized discharges in Fmr1(-/-) preparations, where functional FMRP is absent. The results suggest that constitutive FMRP in hippocampal cells acts as a brake on group I mGluR-mediated translation and epileptogenesis. FMRP downregulation via UPS removes this brake enabling group I mGluR-mediated translation and epileptogenesis.
منابع مشابه
Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model.
Mutations in FMR1, which encodes the fragile X mental retardation protein (FMRP), are the cause of fragile X syndrome (FXS), an X-linked mental retardation disorder. Inactivation of the mouse gene Fmr1 confers a number of FXS-like phenotypes including an enhanced susceptibility to epileptogenesis during development. We find that in a FXS mouse model, in which the function of FMRP is suppressed,...
متن کاملThe mGluR theory of fragile X mental retardation.
Many of the diverse functional consequences of activating group 1 metabotropic glutamate receptors require translation of pre-existing mRNA near synapses. One of these consequences is long-term depression (LTD) of transmission at hippocampal synapses. Loss of fragile X mental retardation protein (FMRP), the defect responsible for fragile X syndrome in humans, increases LTD in mouse hippocampus....
متن کاملCa2+/calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex.
Fragile X syndrome is caused by a lack of fragile X mental retardation protein (FMRP) due to silencing of the FMR1 gene. The metabotropic glutamate receptors (mGluRs) in the central nervous system contribute to higher brain functions including learning/memory, persistent pain, and mental disorders. Our recent study has shown that activation of Group I mGluR up-regulated FMRP in anterior cingula...
متن کاملElongation Factor 2 and Fragile X Mental Retardation Protein Control the Dynamic Translation of Arc/Arg3.1 Essential for mGluR-LTD
Group I metabotropic glutamate receptors (mGluR) induce long-term depression (LTD) that requires protein synthesis. Here, we demonstrate that Arc/Arg3.1 is translationally induced within 5 min of mGluR activation, and this response is essential for mGluR-dependent LTD. The increase in Arc/Arg3.1 translation requires eEF2K, a Ca(2+)/calmodulin-dependent kinase that binds mGluR and dissociates up...
متن کاملExtracellular glutamate exposure facilitates group I mGluR-mediated epileptogenesis in the hippocampus.
Stimulation of group I mGluRs elicits several forms of translation-dependent neuronal plasticity including epileptogenesis. The translation process underlying plasticity induction is controlled by repressors including the fragile X mental retardation protein (FMRP). In the absence of FMRP-mediated repression, a condition that occurs in a mouse model (Fmr1(-/-)) of fragile X syndrome, group I mG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2011